久久精品国产国产精-中文字幕久久波多野结衣av-精品久久久久久中文字幕无码vr-亚洲国产一区二区三区波多野结衣-最新国产精品久久精品

Technical document

What is the rubber-coated injection molding process

2025-04-16 09:04:28 rubber-coated injection molding
In the modern production of plastic products, the overmolding process is playing an increasingly important role. With its unique technical characteristics and wide application range, it endows many products with superior performance and appearance. This article explores the mysteries of the overmolding process.

1. Definition and Principle of Overmolding

1.1 Definition

Overmolding is a special injection molding technique. It involves placing a pre-formed part (usually called an insert) into an injection mold first, then injecting another plastic material into the mold cavity so that the newly injected plastic tightly wraps the insert, forming a complete plastic product with a composite structure.

injection mould

1.2 Principle

The working principle is based on the thermoplastic property of plastics. Inserts typically have specific shapes and functions before being placed into the mold—for example, metal inserts may provide strength and conductivity, while plastic inserts may achieve specific structural or aesthetic effects. When the high-temperature molten overmolding plastic is injected into the mold cavity, it flows around the insert and cools and solidifies under the constraint of the mold, eventually bonding firmly with the insert. This bonding process relies not only on the mechanical bite force generated by plastic cooling shrinkage but may also involve physical adsorption or chemical bonding between the plastic and the insert surface (in cases of specific material combinations).

2. Process Details of Overmolding

2.1 Insert Preparation

  • Material Selection: Choose suitable insert materials based on the product’s intended use and performance requirements, such as metals (e.g., copper, aluminum, stainless steel for strength, conductivity, or magnetism), engineering plastics (e.g., PC, nylon for structural compatibility), and ceramics.

  • Forming and Processing: Machine (e.g., turning, milling, stamping) or mold (e.g., injection molding, die casting) the insert material into the required shape and dimensional accuracy. Ensure the insert surface is clean, free of oil and impurities, to facilitate bonding with the overmolding plastic.

  • Preprocessing: Some inserts may require preprocessing, such as degreasing and surface roughening (e.g., sandblasting) for metal inserts to increase surface roughness and bonding strength, or preheating for certain plastic inserts to reduce temperature differences and internal stress.

injection mould

2.2 Mold Design and Preparation

  • Design Key Points: Overmolding molds are complex and must consider insert placement, positioning accuracy, and plastic melt flow paths. The mold must prevent insert displacement or deformation during injection and provide smooth flow channels for uniform overmolding. Special insert positioning devices (e.g., locating pins, slots) are often designed to ensure accuracy.

  • Manufacturing and Debugging: Manufacture molds with high-precision equipment per design drawings. After completion, rigorously debug for smooth opening/closing, component fit accuracy, and adjust injection parameters via trial molding to ensure qualified production.

2.3 Injection Molding Process

  • Plastic Material Selection: Choose overmolding plastics compatible with inserts in terms of thermal expansion coefficient and chemical compatibility—e.g., low-shrinkage plastics with strong metal adhesion for metal inserts. Also consider mechanical properties, weather resistance, and appearance.

  • Parameter Setting: Precisely set injection parameters (pressure, speed, melt temperature, mold temperature, holding pressure/time) based on material properties, mold structure, and product requirements. These parameters critically affect overmolding quality—e.g., proper pressure/speed ensures full cavity filling, while optimal mold temperature controls cooling for dimensional accuracy.

  • Operation: Place inserts accurately in the mold, close the mold, heat plastic to melt, and inject via screw. Monitor machine status and parameters to ensure process stability.

2.4 Post-Processing

  • Demolding and Cleaning: Remove the overmolded product from the mold after cooling, taking care to avoid damage. Clean surface flash and burrs for required appearance.

  • Quality Inspection: Conduct comprehensive checks, including visual inspection (bubbles, cracks, short shots), dimensional measurement, and performance tests (bond strength, mechanical properties). Only qualified products proceed.

  • Secondary Processing (if needed): Perform post-treatments like painting, silk-screening, or assembly to enhance appearance and functionality.

injection mould

3. Advantages of Overmolding

3.1 Functional Integration

Combining inserts with overmolding plastics integrates multiple functions into one product. For example, embedding metal shielding layers in electronic casings achieves lightweight aesthetics and electromagnetic shielding; inserting metal cores in handles enhances strength while soft rubber overmolding improves grip comfort and anti-slip properties.

3.2 Improved Product Performance

  • Mechanical Enhancement: Metal inserts significantly boost strength, hardness, and wear resistance—e.g., metal bushings in plastic gears withstand higher torque, and metal reinforcing ribs in plastic structures enhance impact resistance.

  • Aesthetic Improvement: Diverse colors and textures of overmolding plastics enable unique appearances, such as two-tone or multi-tone designs in mobile phone casings to enhance market appeal.

3.3 Cost Reduction

Despite complexity, overmolding reduces overall costs by minimizing component count and assembly steps. Additionally, using cost-effective overmolding plastics while reserving high-performance materials for inserts optimizes material usage.

4. Application Fields of Overmolding

4.1 Electronics and Appliances

  • Mobile Devices: Phone casings use metal inserts with plastic overmolding for strength, aesthetics, and signal shielding. Buttons and charging ports often feature rubber overmolding for tactile feedback and water/dust resistance.

  • Home Appliances: Power tool handles combine metal/hard plastic cores with soft rubber overmolding for comfort and grip. Control panels of refrigerators and washing machines use overmolded buttons and trims for durability and aesthetics.

4.2 Automotive Industry

  • Interior Parts: Car steering wheels employ metal skeletons with rubber/soft plastic overmolding for strength and comfort. Adjustment buttons and shift knobs use overmolding for improved appearance and usability.

  • Exterior Parts: Bumpers with plastic bases and elastic rubber overmolding absorb minor impacts, while rearview mirror housings use overmolding for color/texture matching.

injection mould

4.3 Medical Devices

  • Handheld Equipment: Blood pressure monitors and glucometers use overmolded casings and buttons for ergonomic grip and easy cleaning, meeting hygiene standards.

  • Medical Catheters: Some catheters feature rigid inner tubes with soft, biocompatible overmolding to ensure flexibility and reduce tissue irritation.

4.4 Consumer Goods

  • Sports Equipment: Bike handles and racket grips use rubber/silicone overmolding on metal/hard plastic shafts for stability, comfort, and vibration reduction.

  • Kitchenware: Pan and spoon handles with overmolded insulation and anti-slip layers enhance usability and safety.

injection mould


As an advanced plastic molding technology, overmolding demonstrates significant advantages and broad application prospects across industries through its unique principles and processes. By combining the properties of different materials, it not only endows products with enhanced functions and performance but also unlocks greater innovation in design and manufacturing. With advancements in materials science and injection technology, overmolding is poised to play an even more critical role in driving product upgrades and innovation across sectors.

injection mould

Home
Product
News
Contact
主站蜘蛛池模板: 日本丶国产丶欧美色综合| 插b内射18免费视频| 天堂一区| 日韩 欧美 动漫 国产 制服| 强壮的公次次弄得我高潮A片日本| 亚洲一区二区三区国产精华液| 激情内射亚洲一区二区三区爱妻| 日韩高清成片免费视频| 亚洲欧洲成人精品香蕉网| 亚洲国产成人爱av网站| 韩国19禁主播深夜福利视频| 中国无码人妻丰满熟妇啪啪软件| 国产人妻精品一区二区三首| 日日碰狠狠添天天爽不卡 | 日韩人妻无码一区二区三区久久| 亚洲午夜高清国产拍| 久久成人伊人欧洲精品| 亚洲精品一区二区三区四区乱码| 欧美成aⅴ人高清免费观看| 人妻系列无码专区2020| 午夜福利1000集在线观看| 久久中文字幕乱码久久午夜| 亚洲国产综合另类视频| 国产成人无码精品亚洲| 亚洲国产美女精品久久久久| 99欧美日本一区二区留学生| 国产xxxx视频在线观看| 色噜噜狠狠成人中文综合| 亚洲国产av无码精品无广告| 久久www色情成人免费| 久久se精品一区精品二区国产| 在厨房被c到高潮a毛片奶水| 国产清纯在线一区二区vr| 亚洲男人的天堂在线aⅴ视频| 综合在线 亚洲 成人 欧美| 国产av国片偷人妻麻豆| 国产黄a三级三级三级av在线看| 亚洲无线观看国产精品| 日韩综合亚洲色在线影院 | 131美女爱做视频| 欧美交换配乱吟粗大|